UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Ordinary Level

MARK SCHEME for the May/June 2012 question paper for the guidance of teachers

5070 CHEMISTRY

5070/21

Paper 2 (Theory), maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

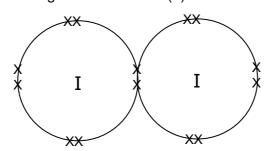
Mark schemes must be read in conjunction with the question papers and the report on the examination.

Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

		J -		GCE O LEVEL – May/June 2012	5070	21
A 1	(a)	Am	monia	a (1)		[1]
	(b)	Pro	pene	/ sulfur dioxide (1)		[1]
	(c)	Oxy	ygen	(1)		[1]
	(d)	Ned	on (1)			[1]
	(e)	Nitr	ogen	/ sulfur dioxide (1)		[1]
	(f)	Chl	orine	(1)		[1]
	(g)	Nitr	ogen	/ carbon monoxide (1)		[1]
						[Total: 7]
A2	(a)	(i)	SO ₂	(1)		[1]
		(ii)		e ratio sulfur : oxygen is 1.25 : 3.75 (1) pirical formula is SO ₃ (1)		[2]
		(iii)	Wate	er/steam (1)		[1]
		(iv)	lron((III)/Fe ³⁺ (1)		[1]
	(b)	(i)	lron((II) hydroxide		[1]
		(ii)		(aq) + 2OH⁻(aq) → Fe(OH)₂(s) nced equation (1)		
				ect state symbols – dependent on correct formulae	(1)	[2]
						[Total: 8]
А3	(a)			electrons / no delocalised electrons / no sea of elect bonds / electrons cannot move (1)	rons / all electron	s are in [1]
	(b)	Allo	ow pa	es gain (kinetic) energy (1) articles move faster ns gain energy		
		Ove Ign	ercom ore w	ne intermolecular forces / break attraction between r veak forces between particles k covalent bonds	nolecules (1)	[2]

Mark Scheme: Teachers' version


Syllabus

Paper

Page 2

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE O LEVEL - May/June 2012	5070	21

(c) Correct structure – ignore inner shells (1)

Allow all crosses or all dots

[1]

(d) (i)
$$At^{-}(1)$$
 [1]

(ii)	element	colour	state
	Cl_2		gas
	Br_2	orange	liquid
	I_2	grey/black	

Correct states (1)

Correct colour (1)

Allow red / brown for bromine [2]

(iii) Black solid/dark grey solid (1) [1]

- (e) (i) (colourless to) yellow solution/straw solution/brown solution/dark grey solid (1) [1]
 - (ii) $Cl_2 + 2I^- \rightarrow I_2 + 2Cl^-$ Ignore state symbols [1]
- (f) Astatine is less reactive than iodine / astatine is less oxidising that iodine / iodide is a better reducing agent than astatide (1)
 Ignore reference to reactivity series [1]

[Total: 11]

Electron configurations (1) Numbers of protons (1)

Numbers of neutrons (1) [3]

(ii) Magnesium loses two electrons and oxygen gains two electrons/two electrons transferred from magnesium to oxygen (1) [1]

	Pa	ge 4	Mark Scheme: Teachers' version	Syllabus	Paper	
			GCE O LEVEL – May/June 2012	5070	21	
	(b)	Many (electrostatic) attractions between ions /many (ionic) bonds / giant structure (1) Not intermolecular forces Not covalent bonds for the first mark large amount of energy to separate the ions/needs lots of energy to break the (ionic) bonds/hard to break (ionic) bonds/high temperature needed to break (ionic) bonds/lots of energy to break the ionic lattice/bonds are strong (1) Ignore large amount of energy to break forces Allow strong forces of attraction between ions [2]				
	(c)	Filter rea Wash rea Air dry re	ny aqueous sulfate including dilute sulfuric acid (1) action mixture (1) sidue with water (1) esidue/put residue into oven (1) ave the residue to dry		[4] [Total: 10]	
A 5	(a)	Copper,	nickel, iron and magnesium (1)		[1]	
	(b)	Allow th			[2]	
	(c)	(i) Exot	thermic (1)		[1]	
			$^{2^+}$ + 2A $l \rightarrow$ 2A l^{3^+} + 3Cu ore state symbols		[1]	
	(d)	Which do) layer of aluminium oxide (1) bes not flake off/acts as a protective barrier/which i water or air to reach surface of aluminium (1)	s impermeable to	water/does [2]	
	(e)	Mass of	Mo = 10417 (1) A <i>I</i> = 562500 g/0.5625 tonnes (1) nswer to 2 sig figs up to calculator value		[2]	
					[Total: 9]	
В6	(a)		a ₂ SO ₄ /KC <i>1</i> /K ₂ SO ₄ /CaC <i>1</i> ₂ /CaSO ₄ /MgC <i>1</i> ₂ /MgSO ₄ (1 aHCO ₃ /KHCO ₃ /Ca(HCO ₃) ₂ /Mg(HCO ₃) ₂)	[1]	
	(b)	0.0276 (1)		[1]	

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE O LEVEL - May/June 2012	5070	21

(c) Moles of Cl^{-} in $1 \text{ dm}^{3} = 0.535/\text{mass}$ in $25 \text{ cm}^{3} = 0.475 \text{ g}$ (1) Moles in $25 \text{ cm}^{3} = 0.0134$ (1) Mass of AgCl = 1.92 g (1) [3]

- (d) Desalination / reverse osmosis (1)
 Allow distillation [1]
- (e) (i) OH⁻ (aq) (1)
 pH = 7.9 indicates alkaline/pH above 7 is alkaline/this ion is present in all alkaline
 solutions (1)
 Allow seawater is alkaline/seawater has a pH above 7
 [2]
 - (ii) Add universal indicator/pH (indicator) paper (1)

 Allow use of pH indicator

 Idea of matching colour against a pH chart/idea that the colour indicates the pH (1) [2]

[Total: 10]

B7 (a) Any two from

Same general formula/members vary by a CH₂ group (1) Same functional group/similar chemical properties (1) **Not** a group of elements

Allow have same reactions gradation of physical properties (1)

[1]

(b) Butanoic acid (1)

Allow methylpropanoic acid

[1]

Allow OH in the structure [1]

(d) $C_7H_{14}O_2$ (1) Allow $C_6H_{13}COOH$ [1]

(e) Boiling points all increase / boiling points shows a trend

And

melting point increase and decreases / melting point is irregular down the series / melting point does not show a trend / melting points fluctuate (1) [1]

Page 6		ge 6		Syllabus	Paper
			GCE O LEVEL – May/June 2012	5070	21
	(f)	-	t wo from ing acid fully dissociates and weak acid partially diss	sociates (1)	
		CH:	$l \rightarrow H^+ + Cl^-(1)$ $_3COOH \Rightarrow H^+ + CH_3COO^-(1)$ ore state symbols ore incorrect equations		[2]
	(g)	Cor	$CO_3(s) + 2CH_3COOH(aq) \rightarrow Ca(CH_3COO)_2(aq) + H_3$ rect equation (1) rect state symbols – dependent on formula (1)	$_{2}O(I) + CO_{2}(g)$	[2]
			()		[Total: 10]
					[Total. To]
В8	(a)	(i)	10 (1)		[1]
	(b)	lgn Not	olid ions cannot move/no free ions (1) ore electrons cannot move : electrons can move olution ions can move/free ions (1)		
			pw particles can move in solution but not in a solid		[2]
	(c)	it lo Not redi Ign cath	de equation involves oxidation since electrons are loses electrons/oxygen is oxidised because its oxidate. Must be a clear link between the equation, gain ar action. ore wrong oxidation numbers node equation involves reduction since electrons are as electrons/hydrogen is reduced because its oxidation.	ion increases (1) and loss of electrons an a gained/water is redu	d oxidation and
	(d)	(i)	Bond breaking takes in energy and bond forming re Allow bond forming is exothermic and bond breaking less energy is released than taken in (1)		[2]
		(ii)	Moles of oxygen = 104.2 (1)		
			Moles of water = 208.3 (1)		
			Mass of water = 3750 g (1)		[3]
					[Total: 10]
В9	(a)	Pos	sition of equilibrium moves to the right/shifts forward	/shifts towards the pro	oducts / forward
- •	\ <i>)</i>	re	action favoured (1) ause the (forward) reaction is endothermic (1)		[2]

Pag	ge 7	e 7 Mark Scheme: Teachers' version	sion Sy	llabus	Paper
		GCE O LEVEL – May/June 2	012	5070	21
(b)	volume/par	eases articles are more crowded/more con- rticles are closer together (1) ons per second/more chance of coll			•
(c)	Any two fro	om:			
	Allow redu	ate of reaction (1) ces the reaction time ction to take place at a lower tempera	ature/saves energy	(1)	
	Allow redu	ces the activation energy nergy resources (1)	ataro, ouved energy	(')	
	Malaa of by	vdrogen = 50 0000 (1)			

(e) unsaturated fat (1)
High pressure/nickel catalyst (1)
Allow unsaturated oil/fats with a carbon-carbon double bond

[Total: 10]

[2]